Drizzle | PostgreSQL full-text search
This guide assumes familiarity with:

This guide demonstrates how to implement full-text search in PostgreSQL with Drizzle ORM. Full-text search is a technique used to search for text within a document or a set of documents. A document is the unit of searching in a full text search system. PostgreSQL provides a set of functions to work with full-text search, such as to_tsvector and to_tsquery:

The to_tsvector function parses a textual document into tokens, reduces the tokens to lexemes, and returns a tsvector which lists the lexemes together with their positions in the document:

import { sql } from 'drizzle-orm';

const db = drizzle(...);

await db.execute(
  sql`select to_tsvector('english', 'Guide to PostgreSQL full-text search with Drizzle ORM')`,
);
[
  {
    to_tsvector: "'drizzl':9 'full':5 'full-text':4
    'guid':1 'orm':10 'postgresql':3 'search':7 'text':6"
  }
]

The to_tsquery function converts a keyword to normalized tokens and returns a tsquery that matches the lexemes in a tsvector. The @@ operator is used for direct matches:

await db.execute(
  sql`select to_tsvector('english', 'Guide to PostgreSQL full-text search with Drizzle ORM')
    @@ to_tsquery('english', 'Drizzle') as match`,
);
[ { match: true } ]

As for now, Drizzle doesn’t support tsvector type natively, so you need to convert your data in the text column on the fly. To enhance the performance, you can create a GIN index on your column like this:

schema.ts
migration.sql
db_data
import { index, pgTable, serial, text } from 'drizzle-orm/pg-core';

export const posts = pgTable(
  'posts',
  {
    id: serial('id').primaryKey(),
    title: text('title').notNull(),
  },
  (table) => ({
    titleSearchIndex: index('title_search_index')
    .using('gin', sql`to_tsvector('english', ${table.title})`),
  }),
);

To implement full-text search in PostgreSQL with Drizzle ORM, you can use the to_tsvector and to_tsquery functions with sql operator:

import { sql } from 'drizzle-orm';
import { posts } from './schema';

const title = 'trip';

await db
  .select()
  .from(posts)
  .where(sql`to_tsvector('english', ${posts.title}) @@ to_tsquery('english', ${title})`);
[
  { id: 1, title: 'Planning Your First Trip to Europe' },
  { id: 3, title: 'Top 5 Destinations for a Family Trip' },
  { id: 5, title: 'Trip Planning: Choosing Your Next Destination' },
  { id: 7, title: 'The Ultimate Road Trip Guide for Explorers' }
]

To match by any of the keywords, you can use the | operator:

const title = 'Europe | Asia';

await db
  .select()
  .from(posts)
  .where(sql`to_tsvector('english', ${posts.title}) @@ to_tsquery('english', ${title})`);
[
  { id: 1, title: 'Planning Your First Trip to Europe' },
  { id: 2, title: "Cultural Insights: Exploring Asia's Heritage" }
]

To match multiple keywords, you can use the plainto_tsquery function:

// 'discover & Italy'
const title = 'discover Italy';

await db
  .select()
  .from(posts)
  .where(sql`to_tsvector('english', ${posts.title}) @@ plainto_tsquery('english', ${title})`);
select * from posts
  where to_tsvector('english', title) @@ plainto_tsquery('english', 'discover Italy');
[ { id: 6, title: 'Discovering Hidden Culinary Gems in Italy' } ]

To match a phrase, you can use the phraseto_tsquery function:

// if you query by "trip family", it will not return any result
// 'family <-> trip'
const title = 'family trip';

await db
  .select()
  .from(posts)
  .where(sql`to_tsvector('english', ${posts.title}) @@ phraseto_tsquery('english', ${title})`);
select * from posts
  where to_tsvector('english', title) @@ phraseto_tsquery('english', 'family trip');
[ { id: 3, title: 'Top 5 Destinations for a Family Trip' } ]

You can also use websearch_to_tsquery function which is a simplified version of to_tsquery with an alternative syntax, similar to the one used by web search engines:

// 'family | first & trip & europ | asia'
const title = 'family or first trip Europe or Asia';

await db
  .select()
  .from(posts)
  .where(sql`to_tsvector('english', ${posts.title}) @@ websearch_to_tsquery('english', ${title})`);
select * from posts
  where to_tsvector('english', title)
  @@ websearch_to_tsquery('english', 'family or first trip Europe or Asia');
[
  { id: 1, title: 'Planning Your First Trip to Europe' },
  { id: 2, title: "Cultural Insights: Exploring Asia's Heritage" },
  { id: 3, title: 'Top 5 Destinations for a Family Trip' }
]

To implement full-text search on multiple columns, you can create index on multiple columns and concatenate the columns with to_tsvector function:

schema.ts
migration.sql
db_data
import { sql } from 'drizzle-orm';
import { index, pgTable, serial, text } from 'drizzle-orm/pg-core';

export const posts = pgTable(
  'posts',
  {
    id: serial('id').primaryKey(),
    title: text('title').notNull(),
    description: text('description').notNull(),
  },
  (table) => ({
    searchIndex: index('search_index').using(
      'gin',
      sql`(
          setweight(to_tsvector('english', ${table.title}), 'A') ||
          setweight(to_tsvector('english', ${table.description}), 'B')
      )`,
    ),
  }),
);

The setweight function is used to label the entries of a tsvector with a given weight, where a weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts of a document, such as title versus body.

This is how you can query on multiple columns:

const title = 'plan';

await db.select().from(posts)
  .where(sql`(
      setweight(to_tsvector('english', ${posts.title}), 'A') ||
      setweight(to_tsvector('english', ${posts.description}), 'B'))
      @@ to_tsquery('english', ${title}
    )`
  );
[
  {
    id: 1,
    title: 'Planning Your First Trip to Europe',
    description: 'Get essential tips on budgeting, sightseeing, and cultural etiquette for your inaugural European adventure.'
  },
  {
    id: 5,
    title: 'Trip Planning: Choosing Your Next Destination',
    description: 'Learn how to select destinations that align with your travel goals, whether for leisure, adventure, or cultural exploration.'
  },
  {
    id: 7,
    title: 'The Ultimate Road Trip Guide for Explorers',
    description: 'Plan your next great road trip with tips on route planning, packing, and discovering off-the-beaten-path attractions.'
  }
]

To rank the search results, you can use the ts_rank or ts_rank_cd functions and orderBy method:

import { desc, getTableColumns, sql } from 'drizzle-orm';

const search = 'culture | Europe | Italy | adventure';

const matchQuery = sql`(
  setweight(to_tsvector('english', ${posts.title}), 'A') ||
  setweight(to_tsvector('english', ${posts.description}), 'B')), to_tsquery('english', ${search})`;

await db
  .select({
    ...getTableColumns(posts),
    rank: sql`ts_rank(${matchQuery})`,
    rankCd: sql`ts_rank_cd(${matchQuery})`,
  })
  .from(posts)
  .where(
    sql`(
      setweight(to_tsvector('english', ${posts.title}), 'A') ||
      setweight(to_tsvector('english', ${posts.description}), 'B')
      ) @@ to_tsquery('english', ${search})`,
  )
  .orderBy((t) => desc(t.rank));
[
  {
    id: 1,
    title: 'Planning Your First Trip to Europe',
    description: 'Get essential tips on budgeting, sightseeing, and cultural etiquette for your inaugural European adventure.',
    rank: 0.2735672,
    rankCd: 1.8
  },
  {
    id: 6,
    title: 'Discovering Hidden Culinary Gems in Italy',
    description: "Unearth Italy's lesser-known eateries and food markets that offer authentic and traditional flavors.",
    rank: 0.16717994,
    rankCd: 1.4
  },
  {
    id: 2,
    title: "Cultural Insights: Exploring Asia's Heritage",
    description: 'Dive deep into the rich history and traditions of Asia through immersive experiences and local interactions.',
    rank: 0.15198177,
    rankCd: 1
  },
  {
    id: 5,
    title: 'Trip Planning: Choosing Your Next Destination',
    description: 'Learn how to select destinations that align with your travel goals, whether for leisure, adventure, or cultural exploration.',
    rank: 0.12158542,
    rankCd: 0.8
  }
]

The ts_rank function focuses on the frequency of query terms throughout the document. The ts_rank_cd function focuses on the proximity of query terms within the document.